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Interfaces of polydisperse fluids: Surface tension and adsorption properties

L. Bellier-Castella H. Xu,! and M. Bau$
Departement de Physique des Mageix (UMR 5586 du CNRS), Universi@aude Bernard-Lyonl, 69622 Villeurbanne Cedex, France
2Physique des Polymes, UniversiteLibre de Bruxelles, Campus Plaine, CP 223, B-1050 Brussels, Belgium
(Received 13 July 2001; published 15 January 2002

We consider a system of spherical colloidal particles with a size polydispersity and use a simple van der
Waals description in order to study the combined effect of both the polydispersity and the spatial nonuniformity
induced by a planar interface between a low-density fluid pterséched in small particlesand a high-density
fluid phase(enriched in large particleéswWe find a strong adsorption of small particles at the interface, the latter
being broadened with respect to the monodisperse case. We also find that the surface tension of the polydis-
perse system results from a competition between the tendency of the polydispersity to lower the surface tension
and its tendency to raise the critical-point temperatiuee, its tendency to favor phase separatioith the
former tendency winning at low temperatures and the latter at the higher temperatures.
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[. INTRODUCTION parent phase is put into appropriate thermodynamic condi-
tions, it will phase separate or “fractionate” into twi@r
Many of the complex fluids used in the industry or in the more[6]) daughter phases. Since these daughter phases dif-
soft condensed-matter physics laboratory are collections der in density and composition, an interface will build up
nearly identical particles which exhibit one or several poly-between them across which the properties of one bulk phase
dispersities, i.e., properties such as the size or the shape thnsform continuously into those of the coexisting bulk
these particles which are distributed within some interval inphase. The properties of such a spatially nonuniform two-
an almost continuous manrdr]. These fluids are hence con- phase system are most conveniently studied in two steps.
tinuous mixtures of similar particles and it is of some prac-First, one determines the two spatially uniform bulk phases
tical importance to know how their composition or polydis- which are able to coexist in equilibrium. Next, one deter-
persity influences their physical properties, e.g., their phasgines the profiles across the interface of those properties
behavior and rheological properties. Here, we will be conyyhich are spatially varying in the two-phase system. For the
cerned only with the equilibrium phase behavior of suchg st step, we will use the results of our earlier stud]

polydisperse fluids. The generalization of }he v_veII-. based on the van der WadlelW) free energy of a polydis-
estabhs_hed methods fqr the study of ph.ase transitions in di Jerse system of spherical colloidal particles interacting via
crete mixtures to continuous mixtures is a technically ver A

demanding task which has recently become an active area f(CIuded volume repulsions and vdW-like attractions. Such a
g ' y 8escription is of course not exact but simplifies considerably

researcH2]. Most of this research has been limited to spa- . . N
tially uniform (or bulk) phases, while it is our purpose here f[he technical problems raised by the study of phase equilibria

to extend it further to nonuniform situations involving the in pplydlsperge systems. For the second step, we will use an
interface between two coexisting bulk phases. Such an intrif2/1i€r extension of the vdW free energy to spatially nonuni-
sic interface is different from, e.g., the interface between dorm systemg8] and generalize it here to_polydlspgrsg Sys-
bulk phase and a substrateee[3] for some preliminary tems. In order to extract the surface tension we will, finally,
work in this direction. Indeed, in the latter case, the inter- 2dapt to the present case a general procedure advocated else-
face can be characterized thermodynamically by a surfac&here[9].
excess free energy defined relative to the substrate, whereasIn Sec. I, we introduce the vdW density functional of a
in the former case, it is characterized by a surface tensiofpatially nonuniform polydisperse system. The density pro-
(which is both a surface free energy and a thermodynamifiles across a planar interface are computed in Sec. lll, while
force) defined with respect to an intrinsic “surface of ten- the corresponding adsorption properties will be discussed in
sion” [4]. We will hence be particularly interested in the Sec. IV. The pressure profiles across the planar interface are
influence of the polydispersity on this interfacial surface ten-determined in Sec. V, while the resulting surface tension is
sion. presented in Sec. VI. Our conclusions follow in Sec. VII.

In order to keep the problem manageable, we will restrict
ourselves to the fluid phases of a system of spherical par-
ticle; with_ a sizg distributio_n,. a situation typical fo_r many || THE SPATIALLY NONUNIFORM POLYDISPERSE
colloidal dispersion$5]. The initial or parent-phase size dis- SYSTEM
tribution will be assumed to be fixed once and for all by the
production process of the colloidal particles and taken to be The equilibrium properties of spatially nonuniform sys-
of the monomodal type, i.e., peaked around a single refettems(e.g., interfacesare most easily studied within density-
ence species, such as is appropriate for the polydisperse geianctional theory(DFT) [10]. The starting point of DFT is
eralization of a one-component system. When timitial)  the variational free energA(T,[p].[P]):
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AS(U)P(V,U))

A(T,[p],[d>]>=F(T.[p])+f drf do p(r,o){®(r,0) M<U>:¢<r’0>+"BT'”( E(r.[o])

—u(o)}, 1) v(o) , ,

| - o +kBTE(r,[p])f do' p(r,o")

whereT is the equilibrium temperatur&,(T,[ p]) the intrin-

sic Helmholtz free energy viewed as a functioiadicated , / . / ro

as[p]) of the average local number densityfr,o), r being +f dr f do” Vallr=r'f;0.a")p(r",0").

the position variablgassuming spherical particlesand o (6)

the (dimensionless polydispersity variable,u(o) is the

chemical potential of species and ®(r,o) the one-body The above represents a straightforward extension of DFT to

external field responsible for the spatial nonuniformity of thecontinuous mixtures while Eqg4) and (5) reduces to the

system(the functional dependence @& on ®(r,o) being  vdw free energy used ifi7] for the uniform polydisperse

indicated ag®]). The equilibrium densityp(r,o), corre-  system as well as to the vdW free energy useBirfor the

sponding to a giverb(r, o), can then be obtained by solving nonuniform monodisperse system. Both approximations re-

the Euler-Lagrange equation ducing to the usual vdW free energy for the uniform mono-
disperse system. The basic physics of the vdW approxima-

SA(T,[pl.[®]) tion being, as usual, the correction of the ideal gaz behavior
T oprio) =0, (2)  for the finite size of the particles via the excluded volume
' T[] correction(E) and the inclusion of the cohesion between the
particles via the interparticle attraction¥ ), as described
corresponding td1), viz. here, respectively, by the first and second term of(Eg.Of

course, more involved expressions B{T,[p]) are avail-
able, but these can only add further complications to the
. (3)  already fairly complex calculations required by the present

T combination of the nonuniformity with the polydispersity of

the system. Past experience has shown, however, that the
Equation (3) expresses the fact that in equilibrium, the present vdW approximation is able to capture the essence of
chemical potentiak(o) of each species has to remain con- the underlying phase behavior in a qualitatively correct man-
stant in space. In the present stu@(T,[p]) will be ap- ner[12]. In [7], we have studied several model polydisper-
proximated by the following vdW-type expressipnsg,11: sities differing in the o dependence ofv(o) and
Va(r;o,0"). It was found there that the model based on the
simple approximation

oF(T[p])

pu(o)=d(r,o)+ 3p(r.0)

F(T,[p])=kBTJ' er dop(r,o)

A%(o)p(r,0)
T[p])) -1 has a phase behavior which is similar to that of the more
involved expressions but is simpler to study. Henceforth, we
L ) , will use thus Egs.(4) and (5) together with Eq.(7). The
+5f drf do f dr f do’ p(r,0) physical contents of Eq7) reflects the factcf. [7]) that the
amplitude polydispersity ofV(r;o,o’) dominates the
XVa(lr=r";a,0")p(r",0"), (4 volume-polydispersity of (¢). The inclusion of the volume
polydispersity ofv(o) will therefore not alter qualitatively
wherekg is Boltzmann’s constani\(o) the thermal de Bro- our conclusions.
glie wavelength of species, VA(r;o,0') the potential of

v(o)=v(l), Va(r;o,0")=cc'V,(r;1,1) (7

X1 1n

attraction between two particles of speciegand o’ a dis- IIl. THE PLANAR INTERFACE
tancer =|r| apart, whileE(r,[p]) represents the excluded _ _ _ _
volume correction resulting from the repulsions We will consider a planar interface perpendicular to zhe

axis. Translational invariance in tH&y) directions implies
then, p(r,0)—p(z,0) and ®(r,o0)—®P(z,0), so that the

E(r,[p])= 1_J' dov(o)p(r,o), (5) Euler-Lagrange Eq6) can be rewritten, after separating the
local (in z) and nonlocal contributions, as

v(0)=4m/3R%(o) being the volume of a spherical particle u(o)=D(z,0)+ po(z,0;T,[7])

of radiusR(o). It should be noted that, as is usual in this

context[11], o is used here both as a species label and as the i f“ dz' Vi(lz—z2' 2V — mi(z 8
(dimensionless polydispersity variableR(a)/R(1), R(1) 7). a(l Dim(@)=m(2)}, (@

being the radius of the reference speaiesl. From Eq.(4),
we obtain for(3) with uo(z,0;T,[ 7]) a shorthand notation for
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A3(o) 7(z,0) while the r.h.s. of Eq(14) representdcf. [7]) the chemical
Mo(Z,U;T,[n])=kBT|nW+kBT|nl_—(z) potential of a uniform phase of density. (o). When the
0 two bulk phases are in equilibrium, the chemical potential of
10(2) the n, (o) phase must be equal to that of the (o) phase,
“‘kBTm"“TVOW(Z)’ (9 hence Eq(13) will be satisfied. Equatioi13) allows us to
0 eliminate u(o) from Eq.(12) and rewrite it as

where
po(*%,05T,[72]) = po(z,05T,[7])
7(z,0)=v(1)p(z,0), no(2)=f do 7(z,0), :gf_ dz' Vi(|z—2'){n(2')— m(2)};  (16)
7 (Z):j do o79(z,0) (10) an integral equation for(z,0) incorporating the boundary
! o conditions. On using Eqg9) and (14), we can rewrite Eq.
] ) . . . (16) as
are the dimensionless density and polydispersity moments,
whereas 7(z,0)=Ay (2)M~(z,0), (17

v(l)V1(|z|)=f dxf dy Va(r:1.1), whereA; (z) is a shorthand notation for

1—n(z 1 1

Az (z)= = 1ot2 exp[ - ] (19
1= 1-ny 1=70(2)

v(1)Vo= | drVa(r;1,1), (11

andM=(z,0) for

with =1 denoting the reference particle of volumél). .

The external(symmetry-breaking field, ®(z,o), will as M*(z,0) = 7]+(0')exp0J dz' BV,(|z—2'))

usual be replaced by boundary conditions. We thus consider ’ - —w

Eq. (8) without external field, viz.

X{ni —m(z")}, (19
p(o)=puo(z,0;T,[ n])+ aj dz' Vi(|z—2']) whereB=1/kgT. Taking now the first twar moments of Eq.
_x (17) yields a system of two integral equations fgg(z) and
x{n1(2') = m(2)} 12 m2, viz.
and require that foz— * o, the solution;(z,¢) of Eq. (12) 70(2)=Ag (2)Mg (2),
matches the bulk-phase densities, say(o), or n(z= . .
+0,0)=7.(0). These bulk-phase densities must hence 71(2)=Ag (2)M1 (2), (20
satisfy Eq.(12) for z= *+o0. Taking the limit of Eq.(12) for
z— +, the second term in its right-hand sideh.s will where

vanish and we obtain
M§(z)=f doM*(z,0), Mf(z)=f dooM=*(z,0).

w(o)=po(z=%%2,0;T,[7:]), (13 2

i.e., the chemical potential of speciesin the nonuniform . o .

system must be constant and equal to the chemical potentigC!Vind EQ.(20) and substituting the result into E¢4.8)—

of specieso in the two bulk phases. Indeed, evaluating the(19 yields finally 7(z,0) via Eq. (17). Note that, since the
rh.s. of Eq.13) from Eq.(9) for 5(z=+=,0)= 7. (o) We bulk-phase densities).. (o) must correspond to the same

obtain chemical potentialcf. Eq. (13)]
A3(o) 7-(0) mo(2, 03T, [ 7)) = po(—,0:T,[7-]). (22)
po(£2, ;T [7:]) =kgTIN———+kgT In-——
v(1) 1= The equation$16)—(20) bearing the “+-" sign are equivalent
+ (but not identical to those bearing the " sign. The above
+keT 70 —+oVoni, (14)  equations can therefore be used with either sign, the results
7o will be the same provided, of course, that the two bulk
phases are coexisting equilibrium phases.
where To proceed, we must specifj,(r; 1,1). Since only fluid

phases are involved the particular form\of(r; 1, 1) is not
x_ +_ very important and in view of Eq11) we will, for simplic-
0 _f do n=(0), 7 _f dooy.(0), (19 ity, take it to be Gaussian or in the notation[a{
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exp—br?)  _ r 13 ' ' '
VA(r,l,l):_€(1,1)8U(1) 3/2; I’=R(l),
3 —
R (1)( b)
(23 ol |
wheree(1,1) is a reference amplitude. t=kgT/e(1,1) de- "
notes the dimensionless temperature, #&d)) yields on using
Eq. (23
11+ E
v _ 8exp-bz) _ z v 8
B 1(|Z|)—_f o172 2T R(1)’ B 0T T 1
R(1)|+
b 7 L |
(24)
Below, we have usefor convergence reasons=4.
Finally, Eqg. (17) also requires explicit data fop.. (o).
For the latter, we will take the two-phase coexistence densi- % 0.2 04 0.6 08

ties obtained ir{7] for the same temperatu® and for an
initial parent-phase densitypo(o)=pohg(o), of average
density py (or, in dimensionless formgpy=pev(1l)) and a
Schulz-Zimm size-distributioihg (o)

aa

ho(ff):r(a)

o texp — ao), (25

whereI'(o) is the Euler gamma function ard=1+ (1/a)
the polydispersity index. Note thatd# | — 1 is the variance
of ho(o) so thatl=1 (or a=«) corresponds to the mono-
disperse limit whereas the reference speaesl corre-
sponds to the average value ofin the parent phase. Of

FIG. 1. The temperaturé)-density(#) bulk-phase diagram for
a=50 (cf. [7]). Three binodals are shown. They correspond to the
parent-phase densitieg= 0.3 (dashed ling 7¢= 7.=0.3659(full
line), and 7,=0.45 (dot-dashed ling Two binodals are truncated
upwards at resp. the supra-critical temperattrel.246 (for 7,
=0.3 and the infracritical temperaturte=1.1905 (for 7,=0.45),
while the untruncated binodal passes through the critical ggint
=1.2355, 7.=0.3659. Similar results are obtainécf. [7]) for «
=15; in which case the critical point correspondstte- 1.2889,
7.=0.4842.

p(z2,0)=p.(0)0(z—25(0))+p-(0) 8(zc(0) ~2)

course, other size distributions can be used but as shown in

[6,7] the particular form ohy(o) has little influence as long
as it remains monomodal.

+I'(0)8(z—z5(0)), (26)

In the present paper, we have studied two polydispersitiegvhere 7. (o) =v(1)p. (o) are the density distributions of

viz. =50 (1=1.02) anda=15 (I=1.07), for several tem-

the two coexisting bulk phases ahdo) is the adsorption of

peratures(t) and densities ). In Fig. 1, we show three SPecieso at the interface for whiclz=z5(0) is the Gibbs
binodals of the bulk phase diagram fer=50 (see alsd7]).  dividing surface of species. In Eq. (26), 6(z) denotes the
In Fig. 2, we show the size distributions of two bulk phasesHeaviside step function and(z) the Dirac delta function.
coexisting fort=1, 7,=0.48, andx=15. The inset of Fig. 2 The macroscopidp(z,0)) and microscopidp(z,c)) pro-
shows the corresponding density distributions. It is seediles can be adjusted by requiring them to satisfy

there that for a range of values (0.3=0=<0.7) the densities
of the “low”-density phase actually exceed the correspond-
ing densities of the “high”-density phase. Finally, in Fig. 3,
we show a variety of density profiles for the nonuniform
two-phase system. It is seen that, compared to the monodi i
perse case, the polydispersity widens the interfacial regior€NSity;

f  dzp(z.0)-p2,0)}1=0, 27

Wwhich implies thatl'(o) be defined as the surface excess
viz.

The results of Fig. 3 have been obtained by solving (26)
iteratively (e.g., by starting from a tanh profjlevhereas the

results shown in Figs. 1 and 2 have been obtained as ex-

plained in[7].

IV. ADSORPTION PROPERTIES

F((r)=Jo;dz{p(z,(r)—f)(z,a)}, (28

wherep(z,0) is the following bulk-phase switch function

p(z,0)=p(0)0[2—25(0) ]+ p-(0) 0] Z5(0) — Z].
(29

In macroscopic thermodynamics it is customary to replace

the continuous density profilesy(z, o) =v(1)p(z, o), ob-
tained in Sec. lll by discontinuousvith respect toz) pro-
files, 7(z, o) =v(1)p(z, o), of the form[4]

Since atz=*o both densities matchy(z==*»,0)=p(z
=+ow,0)=p.(0), we can integrate Eq28) by parts and
obtain
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FIG. 2. The density+.(c)=n.h.(o); cf. insef and size-
distributions[h..(o)] of the low-density(%, ; full line) and the
high-density(7_ ; dashed lingbulk phases . < #_) that coexist
fort=1, o= n.=0.4842, andx=15. Note from the inset that for,
0.3s0=<0.7, the behaviors ofy..(¢) and .=/ do n.(o) are
reversed, i.e., although, < »_ we haver (o)> n_(o) for these
o values. The lowthigh-)density phase is enriched in smédfrge
particles.

Fo)- | ddzgo)-2'zo) (30

where p’(z,0)=dp(z,0)/dz. As seen from Eq(30), the
value ofI'(0) attributed to a givemp(z, o) still depends on

the value ofzg(o). Since there is no absolute determination
possible forzg(o), we have to fix it arbitrarily, e.g., for the

reference specias= 1. Taking hencefortlag(o)=2z5(1) for

PHYSICAL REVIEW E 65 021503

both an excess of small particlgs;(o)>0 for c<1] and a
depletion of large particle§l’;(o)<0 for o>1] with an
adsorption I';(o) ] which strongly depends onand 7.

V. PRESSURE PROFILE ACROSS THE PLANAR
INTERFACE

Besides the density profilgp(z,0)] which gives rise to

the adsorption properties described in the previous section,

an interface also involves a pressure prdfi¢z) ] which in
turn gives rise to the surface tension as will be sh¢@jnn

the next section. In order to expose the pressure in the inte-

rior of the interface described hy(z,o), we first cut this
interface with a plane perpendicular to the density profiles,
say thex=0 plane, and remove the matter on th€0 side
of this plane while leaving the matter on tkes0 side intact.
Such a semi-infinite system with a density(r,o)
=0(X)p(z,0), can be realized within the DFT of Sec. Il by
replacing the matter removed from tkeZ0 half space by a
corresponding external field, s&(r,o). The pressure act-
ing normal to thex=0 plane, i.e., acting in a direction which

is tangential to the density profiles, can then be obtained by

submitting thex=0 plane to an infinitesimal nonuniform
normal deformation, vizx— x+ du(y,z), and computing the
resulting thermodynamic work of deformatiotcf. [9]).
Since during this infinitesimal deformation®(r, o)
—®(r, o)+ 6P(r, o) and p(r, o)—p(r, o)+ p(r, o),
the system has to remain in equilibrium at the givieand
u(o), the relation betweedd (r, o) and dp(r,o) can be
obtained from the equilibrium conditiof8) as

Su(o)=0=386d(r,o)

, . S°F(T.[p]) .,
+j dr fdo 3p(r.0)8p(r 07 op(r',o").

(33

all o we can fixzg(1) by requiring that the corresponding The resulting thermodynamic work of deformatioi can

adsorptionI'(1), vanishes. Equatiof80) implies then

fw dz 2'(z,1)
zg(1)=— , (31)
J dzp'(z1)
whereas Eq(30) becomes
o= | ddzm-a'ze, @2

then be obtained fronl):

5A|T,[M]=f drf dop(r,0)5®(r,0), (34
or on using Eq(33), from
5A|T'[#]:—f drf daf dr’f do’ p(r,o)
S°F(T,[p]) Sp(r’ o). (35

op(r,o)op(r’,o")

where the subscript 1 di(o) indicates that the adsorption of Since in the present geometry we havén(r,o)= p[X
specieso is referred to the zero-adsorption Gibbs dividing + du(Y,2),y,z,a] — p(X,y,z,0) = éu(y,z) [dp (r,o)/ X]

surface (31) of the reference species=1, hencel’;(1)

+0(6u?), Eq. (35 can be rewritten after dropping the

=0. Since, moreover, the system is of infinite extend inzhe O(du?) term

direction, we may choosg;(1) as the origin of our coordi-
nate system, i.ezg(1)=0. Some examples df (o) are

given in Fig. 4. As seen from Fig. 4, at the interface there is

5A|T,[M]=—f dy’f dz'su(y’,z')p(y’.z'), (36)
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08 — 15
®
125 | i
0.6
l_
¥4
n(2) n(z,0)
04 075
05|
02
025 |
08 6 4 2 0,2 4 6 8 10 0 8 6 4 2 0,2 4 6 8 10
06 | (c)
7(z,0)
05 .
;:
|
04 /Y
{]
,/’ S FTETY TRV LYY
. e df T
03 :
-20 -10 0, 10 20

FIG. 3. Density profiles fore=15 across a planar interfac&)—(b) at constant temperaturé=1) and(c) at constant densityf,
= 1.=0.4842). In(a), we shown(z) (full line) and 7,(z) (dotted ling. Also shown for comparison is the monodisperse ¢dashed ling
corresponding tax=o and 7,(z)=74(2). It is seen that the polydispersity broadens the interfacéb)inwe showz(z,o) for c=1.25
(dot-dashell o=1 (dashed, o=0.75(dotted, ando=0.65(full line). It is seen that the small particles £ 1) accumulate in the interfacial
region. Note also thay, (0.65)> 5_(0.65), whereas;, (0.75)< »_(0.75) in agreement with the reversal seen in Fig. 2c)pwe show
7(z,0=0.65) for a=15, 7,=0.4842, and=0.85 (full line), 1 (dot9, 1.1 (short dashes 1.2 (long dashes and 1.28(dot-dash. (Here,
z*=[z2-25(1)1/R(1)).

which defines the pressupy,z) acting atr=(0,y,2) in a 5°F(T.[p]) S(r—r"Yé(oc—a’)

direction normal to thex=0 plane. Indeed, sincéu(y,z) is S So(r o) B
arbitrary Eqs(35—(36) imply p(r,0)op(r",a7) p(r.0)

+Va(lr=r'|;0,0")

p(y,z)zf dxfdaf dr’f do' p(r',a") S(r—r')
+kgT =——= [ (o)+v(o')
2 E(r, [p])
y o°F(T.[p])  dp(r,o) 37
5p(r',a’)5p(l’,a) ox ' 4+ - U(O- U(U J d Hp(r O_H)]
E(r, [p])

where, for convenience, we have interchanged the role of the 39)
primed and unprimed variables. In the present vdW approxi-
mation, we obtain from Eq4) which on behalf of Eq(7), reduces here to
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0.75 T T T T
p(y, z)—f dxf dcr[ kBT&p(r .9)
0.5
’ + | dr’ | do'p(r’,c")Va(lr—1'];0,0")
- f J o'p(r',a" )Va( 0,0
025 X&pgx,(r) +keTo(1)p(r,0)

[1+E(r,[p])]j do’M]- (40)

“TEr o] ox

Taking into account that herg(r,o) = 6(x)p(z,0), we can

-0.25 rewrite Eq.(40) as

fw 70(2) 6(X) ]

v(1)p(y,2)= kBTf dx X | 1= no(2) 0(X)

+j dxfdr’VA(|r—r’|;1,1)

02 T T

X 6(x)n1(2) 6(x") 71(Z"), (41)

wherezy(z) and 7,(z) have been defined in E(LO). Equa-
tion (41) can be rewritten as

1 %
o(Lp(2)= ”0((2)) Em(zﬁ_wdz'vldz—z'b
X(2"), (42)

where V,(|z|]) was defined in Eq(11) and we took into

account thap(y,z) is independent of as expected from the
translational invariance in thgdirection. We finally rewrite

Eqg. (42) in a manner similar to E(8)

o v(l)p(2)=v(1)po(Z;T,[77])+%nl(z)fidz’ Vi(lz—2'|)

FIG. 4. The adsorptiol' (o) of o particles relative to the zero-
adsorption Gibbs dividing surfades(1)] of the reference particle X{m(2") = m(2)}, (43
(oc=1) at (a) fixed density andb) fixed temperature. Panéd)
corresponds tax=15, 7,=0.4842, andt=0.90 (full line), 1.00  with py(z;T,[ 7]) a shorthand notation for
(dotg, 1.10 (short dashes 1.20 (long dashes 1.28 (dot-dash.
Panel (b) corresponds toa=50, t=1.15, and 5,=0.45 (line), BT7Io( )
0.3659(dotg, 0.3 (dashes Note the rapid variations withand 7, v(L)po(z;T,[ 7] =
of the interfacial excess of the small particles<1) and depletion (Z)
of the large particles¢>1). [Here,I'} (¢) =T'1(o) Xv(1)/R(1).]

1
Vo[ m(2)1?% (49

whereV, was defined in Eq(11). It is seen that Eq(44)

represents the usual vdW pressure of a unifgpualydis-

SF(T.[p])  _o&r—=r)é(o—a’) perse¢ system evaluated for the local densiyfz,o), while
Sp(r,o)dp(r',a’) B p(r,o) the same is true of Eq9) for the chemical potential. From

Eq. (40), it is seen that the local pressysé€z) is completely

+o0'Va(Ir=r'[;1,)+KeTS(r=r")  determined by the local density(z,0). From Eq.(43) and

1+ E(f,[p])] 7(+2,0)=7.(0) we obtain p(+=)=pg(+=;T,[7.]),

Xv()|—=———=7 39 but sincen.. (o) must satisfy[ 7]
YOIEET 39
kB 770 1 kBT770 1
. — Vo( 71 )2_ Vo( 71 )2 (45)
so that Eq(37) can be rewritten 1
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0.125 ' ' ' ' T T found in the monodisperse caf® for a different potential
L r~— ] Va(r;1,1) and was seen also in the simulation results of
~ 7 [13]). This local structure of(z) reflects a competition be-
./ I
o ~ tween the characteristic length scales @fz,o) and of

Va(r;1,1). It is also seeficompare Figs. @ and (b)] that
increasing the polydispersityi.e., lowering @) widens the
0.075 1 . . . . .

‘ P interfacial region(i.e., the region where’(z) #0].

VI. SURFACE TENSION AND SURFACE OF TENSION

In a way analoguous to E¢R6), the microscopic pressure
0.025 L i profile p(z) of Sec. V is replaced in macroscopic thermody-
namics by a discontinuous pressure profdéz):

pP(2)=p;60(z—29)+p_0(2o—2)— yd(z—25), (46)

wherep.. = p(*«) denote the bulk-phase pressures ansl

-0.025 . . ' 1 1 L : L L the surface tension acting on a surface of tension located at
- z z=2,. As in Eq. (27), the two profiles can be adjusted by

requiring that

0.18 T T T T T T T T

R o T | aztpa-pt1 -0, @7

0.16 - - which on behalf of Eq(46) yields

3

y= [ dztpz)-pia) @9

0.14
wherep(z)

P(2)=p. 6(z—20)+p-6(zo—2) (49)
0.12 is the switch function for the bulk-phase press{cé Eq.
(29)]. Integrating Eq.(48) by parts and taking into account
that for a planar interface we must hapé=* o) =p(*x)
=p-, together withp, =p_, yields

®)

0.1
-10 6 8 10

y= fidz zp(2), (50

FIG. 5. The pressure profilgp(z)] versus the distandg) from
a planar interface perpendicular maxis for (8) «=50 and 7,
=0.3659 andb) =15 and7,=0.4842 and three temperatures which shows thaty can be determined from the knowledge
=0.9 (full line), t=1 (dotg, andt=1.1 (dot-dashes The interfa-  of p'(z)=dp(z)/dz alone, i.e., without knowing, [cf. the
cial region is seen to be broadened by the polydispersity. All prodifference with Eq.(30)], a feature specific to the planar

files exhibit a pressure depletigexcesgon the hightlow-) density  interface(cf. [9]). To determinez,, one can nevertheless also
side of the interface[Here, p*(z)=p(z)v(1)/e(1,1) and z* impose(cf. [9]) that

=2/R(1).]

together with Eg. (22), we have p(«)=p(—«), or f,xdz 4p(2)—p(2)} =0, (5D)
Jdz p'(2)=0, which expresses the stability of the planar

interface(cf. [9] for details. which on using Eq(47) can be rewritten as

Some of the pressure profileg(z), obtained from Eg.
(43) using the density profiles of Sec. Ill are shown in Fig. 5. % - o
While p(z) remains constant in the bulk phases, it exhibits a 0= f_xdz(z—zo){p(z)— p(2)}= f_wdz(z— zo){p(2)
structure in the interfacial region which is more pronounced
for the lower temperatures and disappears gradually vithen -p(2)}, (52
=t. is approached. This structure consists of a pressure
depletion on the high-density side of the interface and a presr integrating Eq(52) by parts and using, =p_, one ob-
sure excess on the low-density si@similar structure was tains

021503-8
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0.1 T T T

0.125

0.025 -

0
0.7

FIG. 6. The surface tensiory) versus the temperatu(® for: () «=50 and»,=0.3 (dot9, 79= .= 0.3659(full line) and 7,=0.45
(dot-dash; (b) a=15 (dot-dash, =50 (dotg, and = (full line) for 7= n.(a); (c) the same asbh) but plotted now versus/t.(a)
wheret.(a) and 5.(«) are, respectively, théeduced critical-point temperature and density of a system with polydispersity imeek

+ (/). (Here,y*=yR(1)v(1)/e(1,1).)

f dz(z—zy)%p’(2)=0. (53
Using, f dz p’(z) =0, Eqg.(53) yields finally

E fidz Zp'(2)

Zp= (54)

2 ﬁ;dz zp(2)

so that bothy and z, can be obtained fronp’(z) [cf. Egs.
(50) and (54)].

Figure 6 shows some of the results obtained fansing
the pressure profiles of Sec. V. From Figait is seen that
vy decreases when increasing, at a fixed polydispersity.

fects [cf. Fig. 6b)]: the polydispersity tends to lower the
surface tension but at the same time it raises the critical-point
temperature since the polydispersity favors the phase separa-
tion (cf. [7]). As a net result of this competition, the surface
tension of the polydisperse system is lower than that of the
monodisperse one fdr<ty but exceeds it fot>ty, with a
crossover temperatuig which increases with the polydis-
persity. To show this more clearly Fig(® displaysy versus
t/t.(a), wheret.(a) is the critical point temperature of the
system with polydispersityt.

The above surface tensidr) acts on the surface of ten-
sion located az=z, [cf. Eq. (46)]. From Fig. 7, it is seen
that z,<0, i.e., the surface of tension is different from the
zero-adsorption Gibbs dividing surfage=z¢(1)=0] and
located on the high-density side of this interfagtleis can
also be seen from Fig.)5The fact thaky# zg(1) points to a

When, instead, the polydispersity is changed starting fronfundamental inadequacy of the macroscopic description of
the monodisperse case € ») there are two competing ef- interfaces(cf. [9]) since two different quantities are used to
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4 T T

0 Il 1
1 1.05 1.1
t

1.15

FIG. 7. Tolman’s lengthlg=z5(1)— zy) versus the temperature
(t) for =50 and#5,=0.3 (dot9, 79= 7.=0.3659(dash, and 7,
=0.45 (dot-dash. [Here, 13 =11/R(1).]

locate the interface on a macroscopic level. The quarttjty,
=25(1)—2zp, is usually called Tolman’s lengtf]. Finally,
from Fig. 8 it is seen that on approaching the critical paint
vanishes with a classical critical exponent3/2) as ex-
pected from the mean-field vdW thedi].

VII. CONCLUSIONS

We have studied the planar interface resulting from th

phase separation or fractionation of a parent phase of a pol
disperse colloidal system into a low-density fluid phase en

PHYSICAL REVIEW E 65 021503

=5 T T T

~10 L 1 L

-5 —~4 -3.5 3
Int*

FIG. 8. A Iny* versus Int* plot for a=« (full line) and «
=15, 79= 7n.=0.4842(dot-dash. In both cases, the critical expo-
nent(=3/2) of y is classical(Here,t* =[t.(a)—t]/t.(a).)

Waals descriptiof7—8| to model the polydisperse nonuni-
form system of spherical colloidal particles with excluded
volume repulsions and Gaussian attractions, it was found that
the small particles accumulate at the interface, the latter be-
ing moreover depleted with larger particles and broadened
with respect to the monodisperse case. We also found that for
a given temperature, the surface tension is the result of a
competition between two polydispersity-induced effects,
namely, its tendency to lower the surface tension and at the

&ame time to raise the critical point temperature, with the
Yormer effect winning at low temperatures and the latter at

higher temperatures. Finally, the surface of tension was

r?ched i_n small parti_cles and a high-density fluid phase_ ®Nfound to be located on the high-density side of the interface
riched in large particles. In order to tackle the comblnedpointing to a positive Tolman's length.

effect of the system’s polydispersity and spatial nonunifor-
mity we have kept the theoretical description as simple as
possible but are confident that similar results can be found
from more involved descriptions. Using a simple van der
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