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Interfaces of polydisperse fluids: Surface tension and adsorption properties
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~Received 13 July 2001; published 15 January 2002!

We consider a system of spherical colloidal particles with a size polydispersity and use a simple van der
Waals description in order to study the combined effect of both the polydispersity and the spatial nonuniformity
induced by a planar interface between a low-density fluid phase~enriched in small particles! and a high-density
fluid phase~enriched in large particles!. We find a strong adsorption of small particles at the interface, the latter
being broadened with respect to the monodisperse case. We also find that the surface tension of the polydis-
perse system results from a competition between the tendency of the polydispersity to lower the surface tension
and its tendency to raise the critical-point temperature~i.e., its tendency to favor phase separation! with the
former tendency winning at low temperatures and the latter at the higher temperatures.
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I. INTRODUCTION

Many of the complex fluids used in the industry or in t
soft condensed-matter physics laboratory are collection
nearly identical particles which exhibit one or several po
dispersities, i.e., properties such as the size or the shap
these particles which are distributed within some interva
an almost continuous manner@1#. These fluids are hence con
tinuous mixtures of similar particles and it is of some pra
tical importance to know how their composition or polydi
persity influences their physical properties, e.g., their ph
behavior and rheological properties. Here, we will be co
cerned only with the equilibrium phase behavior of su
polydisperse fluids. The generalization of the we
established methods for the study of phase transitions in
crete mixtures to continuous mixtures is a technically v
demanding task, which has recently become an active are
research@2#. Most of this research has been limited to sp
tially uniform ~or bulk! phases, while it is our purpose he
to extend it further to nonuniform situations involving th
interface between two coexisting bulk phases. Such an in
sic interface is different from, e.g., the interface betwee
bulk phase and a substrate~see @3# for some preliminary
work in this direction!. Indeed, in the latter case, the inte
face can be characterized thermodynamically by a sur
excess free energy defined relative to the substrate, whe
in the former case, it is characterized by a surface tens
~which is both a surface free energy and a thermodyna
force! defined with respect to an intrinsic ‘‘surface of te
sion’’ @4#. We will hence be particularly interested in th
influence of the polydispersity on this interfacial surface te
sion.

In order to keep the problem manageable, we will rest
ourselves to the fluid phases of a system of spherical
ticles with a size distribution, a situation typical for man
colloidal dispersions@5#. The initial or parent-phase size dis
tribution will be assumed to be fixed once and for all by t
production process of the colloidal particles and taken to
of the monomodal type, i.e., peaked around a single re
ence species, such as is appropriate for the polydisperse
eralization of a one-component system. When this~initial!
1063-651X/2002/65~2!/021503~11!/$20.00 65 0215
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parent phase is put into appropriate thermodynamic co
tions, it will phase separate or ‘‘fractionate’’ into two~or
more @6#! daughter phases. Since these daughter phases
fer in density and composition, an interface will build u
between them across which the properties of one bulk ph
transform continuously into those of the coexisting bu
phase. The properties of such a spatially nonuniform tw
phase system are most conveniently studied in two st
First, one determines the two spatially uniform bulk phas
which are able to coexist in equilibrium. Next, one dete
mines the profiles across the interface of those proper
which are spatially varying in the two-phase system. For
first step, we will use the results of our earlier study@7#
based on the van der Waals~vdW! free energy of a polydis-
perse system of spherical colloidal particles interacting
excluded volume repulsions and vdW-like attractions. Suc
description is of course not exact but simplifies considera
the technical problems raised by the study of phase equili
in polydisperse systems. For the second step, we will use
earlier extension of the vdW free energy to spatially nonu
form systems@8# and generalize it here to polydisperse sy
tems. In order to extract the surface tension we will, fina
adapt to the present case a general procedure advocated
where@9#.

In Sec. II, we introduce the vdW density functional of
spatially nonuniform polydisperse system. The density p
files across a planar interface are computed in Sec. III, w
the corresponding adsorption properties will be discusse
Sec. IV. The pressure profiles across the planar interface
determined in Sec. V, while the resulting surface tension
presented in Sec. VI. Our conclusions follow in Sec. VII.

II. THE SPATIALLY NONUNIFORM POLYDISPERSE
SYSTEM

The equilibrium properties of spatially nonuniform sy
tems~e.g., interfaces! are most easily studied within density
functional theory~DFT! @10#. The starting point of DFT is
the variational free energy,A(T,@r#,@F#):
©2002 The American Physical Society03-1
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A~T,@r#,@F#!5F~T,@r#!1E dr E ds r~r ,s!$F~r ,s!

2m~s!%, ~1!

whereT is the equilibrium temperature,F(T,@r#) the intrin-
sic Helmholtz free energy viewed as a functional~indicated
as@r#! of the average local number density,r(r ,s), r being
the position variable~assuming spherical particles!, and s
the ~dimensionless! polydispersity variable,m~s! is the
chemical potential of speciess and F(r ,s) the one-body
external field responsible for the spatial nonuniformity of t
system~the functional dependence ofA on F(r ,s) being
indicated as@F#!. The equilibrium density,r(r ,s), corre-
sponding to a givenF(r ,s), can then be obtained by solvin
the Euler-Lagrange equation

dA~T,@r#,@F#!

dr~r ,s!
U

T,@F#

50, ~2!

corresponding to~1!, viz.

m~s!5F~r ,s!1
dF~T@r#!

dr~r ,s!
U

T

. ~3!

Equation ~3! expresses the fact that in equilibrium, th
chemical potentialm~s! of each speciess has to remain con-
stant in space. In the present study,F(T,@r#) will be ap-
proximated by the following vdW-type expression@7,8,11#:

F~T,@r#!5kBTE dr E dsr~r ,s!

3H lnS L3~s!r~r ,s!

E~r ,@r#! D21J
1 1

2 E drE ds E dr 8 E ds8 r~r ,s!

3VA~ ur2r 8u;s,s8!r~r 8,s8!, ~4!

wherekB is Boltzmann’s constant,L~s! the thermal de Bro-
glie wavelength of speciess, VA(r ;s,s8) the potential of
attraction between two particles of speciess and s8 a dis-
tancer 5ur u apart, whileE(r ,@r#) represents the exclude
volume correction resulting from the repulsions

E~r ,@r#!512E ds v~s!r~r ,s!, ~5!

v(s)54p/3R3(s) being the volume of a spherical partic
of radiusR(s). It should be noted that, as is usual in th
context@11#, s is used here both as a species label and as
~dimensionless! polydispersity variable,R(s)/R(1), R(1)
being the radius of the reference speciess51. From Eq.~4!,
we obtain for~3!
02150
he

m~s!5F~r ,s!1kBT lnS L3~s!r~r ,s!

E~r ,@s#! D
1kBT

v~s!

E~r ,@r#!
E ds8 r~r ,s8!

1E dr 8 E ds8 VA~ ur2r 8u;s,s8!r~r 8,s8!.

~6!

The above represents a straightforward extension of DFT
continuous mixtures while Eqs.~4! and ~5! reduces to the
vdW free energy used in@7# for the uniform polydisperse
system as well as to the vdW free energy used in@8# for the
nonuniform monodisperse system. Both approximations
ducing to the usual vdW free energy for the uniform mon
disperse system. The basic physics of the vdW approxi
tion being, as usual, the correction of the ideal gaz beha
for the finite size of the particles via the excluded volum
correction~E! and the inclusion of the cohesion between t
particles via the interparticle attractions (VA), as described
here, respectively, by the first and second term of Eq.~4!. Of
course, more involved expressions ofF(T,@r#) are avail-
able, but these can only add further complications to
already fairly complex calculations required by the pres
combination of the nonuniformity with the polydispersity o
the system. Past experience has shown, however, tha
present vdW approximation is able to capture the essenc
the underlying phase behavior in a qualitatively correct m
ner @12#. In @7#, we have studied several model polydispe
sities differing in the s dependence ofv(s) and
VA(r ;s,s8). It was found there that the model based on t
simple approximation

v~s!5v~1!, VA~r ;s,s8!5ss8VA~r ;1,1! ~7!

has a phase behavior which is similar to that of the m
involved expressions but is simpler to study. Henceforth,
will use thus Eqs.~4! and ~5! together with Eq.~7!. The
physical contents of Eq.~7! reflects the fact~cf. @7#! that the
amplitude polydispersity ofVA(r ;s,s8) dominates the
volume-polydispersity ofv(s). The inclusion of the volume
polydispersity ofv(s) will therefore not alter qualitatively
our conclusions.

III. THE PLANAR INTERFACE

We will consider a planar interface perpendicular to thz
axis. Translational invariance in the~x,y! directions implies
then, r(r ,s)→r(z,s) and F(r ,s)→F(z,s), so that the
Euler-Lagrange Eq.~6! can be rewritten, after separating th
local ~in z! and nonlocal contributions, as

m~s!5F~z,s!1m0~z,s;T,@h#!

1sE
2`

`

dz8 V1~ uz2z8u!$h1~z8!2h1~z!%, ~8!

with m0(z,s;T,@h#) a shorthand notation for
3-2
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m0~z,s;T,@h#!5kBT ln
L3~s!

v~1!
1kBT ln

h~z,s!

12h0~z!

1kBT
h0~z!

12h0~z!
1sV0h1~z!, ~9!

where

h~z,s!5v~1!r~z,s!, h0~z!5E ds h~z,s!,

h1~z!5E ds sh~z,s!, ~10!

are the dimensionless density and polydispersity mome
whereas

v~1!V1~ uzu!5E
2`

`

dx E
2`

`

dy VA~r ;1,1!,

v~1!V05E dr VA~r ;1,1!, ~11!

with s51 denoting the reference particle of volumev(1).
The external~symmetry-breaking! field, F(z,s), will as
usual be replaced by boundary conditions. We thus cons
Eq. ~8! without external field, viz.

m~s!5m0~z,s;T,@h#!1sE
2`

`

dz8 V1~ uz2z8u!

3$h1~z8!2h1~z!% ~12!

and require that for,z→6`, the solutionh(z,s) of Eq. ~12!
matches the bulk-phase densities, sayh6(s), or h(z5
6`,s)5h6(s). These bulk-phase densities must hen
satisfy Eq.~12! for z56`. Taking the limit of Eq.~12! for
z→6`, the second term in its right-hand side~r.h.s! will
vanish and we obtain

m~s!5m0~z56`,s;T,@h6# !, ~13!

i.e., the chemical potential of speciess in the nonuniform
system must be constant and equal to the chemical pote
of speciess in the two bulk phases. Indeed, evaluating t
r.h.s. of Eq.~13! from Eq. ~9! for h(z56`,s)5h6(s) we
obtain

m0~6`,s;T,@h6# !5kBT ln
L3~s!

v~1!
1kBT ln

h6~s!

12h0
6

1kBT
h0

6

12h0
6 1sV0h1

6 , ~14!

where

h0
65E ds h6~s!, h1

65E ds sh6~s!, ~15!
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while the r.h.s. of Eq.~14! represents~cf. @7#! the chemical
potential of a uniform phase of densityh6(s). When the
two bulk phases are in equilibrium, the chemical potential
the h1(s) phase must be equal to that of theh2(s) phase,
hence Eq.~13! will be satisfied. Equation~13! allows us to
eliminatem~s! from Eq. ~12! and rewrite it as

m0~6`,s;T,@h6# !2m0~z,s;T,@h#!

5sE
2`

`

dz8 V1~ uz2z8u!$h1~z8!2h1~z!%; ~16!

an integral equation forh(z,s) incorporating the boundary
conditions. On using Eqs.~9! and ~14!, we can rewrite Eq.
~16! as

h~z,s!5A0
6~z!M 6~z,s!, ~17!

whereA0
6(z) is a shorthand notation for

A0
6~z!5

12h0~z!

12h0
6 expH 1

12h0
62

1

12h0~z!J ~18!

andM 6(z,s) for

M 6~z,s!5h6~s!expsE
2`

`

dz8 bV1~ uz2z8u!

3$h1
62h1~z8!%, ~19!

whereb51/kBT. Taking now the first twos moments of Eq.
~17! yields a system of two integral equations forh0(z) and
h1(z), viz.

h0~z!5A0
6~z!M0

6~z!,

h1~z!5A0
6~z!M1

6~z!, ~20!

where

M0
6~z!5E ds M 6~z,s!, M1

6~z!5E ds sM 6~z,s!.

~21!

Solving Eq.~20! and substituting the result into Eqs.~18!–
~19! yields finally h(z,s) via Eq. ~17!. Note that, since the
bulk-phase densitiesh6(s) must correspond to the sam
chemical potential@cf. Eq. ~13!#

m0~`,s;T,@h1# !5m0~2`,s;T,@h2# !. ~22!

The equations~16!–~20! bearing the ‘‘1’’ sign are equivalent
~but not identical! to those bearing the ‘‘2’’ sign. The above
equations can therefore be used with either sign, the res
will be the same provided, of course, that the two bu
phases are coexisting equilibrium phases.

To proceed, we must specifyVA(r ; 1, 1). Since only fluid
phases are involved the particular form ofVA(r ; 1, 1) is not
very important and in view of Eq.~11! we will, for simplic-
ity, take it to be Gaussian or in the notation of@7#
3-3
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VA~r ;1,1!52e~1,1!8v~1!
exp~2br̄2!

R3~1!S p

b D 3/2; r̄ 5
r

R~1!
,

~23!

wheree~1,1! is a reference amplitude. Ift5kBT/e(1,1) de-
notes the dimensionless temperature, Eq.~11! yields on using
Eq. ~23!

bV1~ uzu!52
8

t

exp~2bz̄2!

R~1!S p

b D 1/2, z̄5
z

R~1!
; bV052

8

t
.

~24!

Below, we have used~for convergence reasons! b54.
Finally, Eq. ~17! also requires explicit data forh6(s).

For the latter, we will take the two-phase coexistence de
ties obtained in@7# for the same temperature~t! and for an
initial parent-phase density,r0(s)5r0h0(s), of average
density r0 ~or, in dimensionless form,h05r0v(1)! and a
Schulz-Zimm size-distributionh0(s)

h0~s!5
aa

G~a!
sa21 exp~2as!, ~25!

where G~s! is the Euler gamma function andI 511(1/a)
the polydispersity index. Note that 1/a5I 21 is the variance
of h0(s) so thatI 51 ~or a5`! corresponds to the mono
disperse limit whereas the reference speciess51 corre-
sponds to the average value ofs in the parent phase. O
course, other size distributions can be used but as show
@6,7# the particular form ofh0(s) has little influence as long
as it remains monomodal.

In the present paper, we have studied two polydispersi
viz. a550 (I 51.02) anda515 (I 51.07), for several tem-
peratures~t! and densities (h0). In Fig. 1, we show three
binodals of the bulk phase diagram fora550 ~see also@7#!.
In Fig. 2, we show the size distributions of two bulk phas
coexisting fort51, h050.48, anda515. The inset of Fig. 2
shows the corresponding density distributions. It is se
there that for a range ofs values (0.3<s<0.7) the densities
of the ‘‘low’’-density phase actually exceed the correspon
ing densities of the ‘‘high’’-density phase. Finally, in Fig.
we show a variety of density profiles for the nonunifor
two-phase system. It is seen that, compared to the mono
perse case, the polydispersity widens the interfacial reg
The results of Fig. 3 have been obtained by solving Eq.~20!
iteratively ~e.g., by starting from a tanh profile! whereas the
results shown in Figs. 1 and 2 have been obtained as
plained in@7#.

IV. ADSORPTION PROPERTIES

In macroscopic thermodynamics it is customary to repl
the continuous density profiles,h(z, s)5v(1)r(z, s), ob-
tained in Sec. III by discontinuous~with respect toz! pro-
files, h̄(z, s)5v(1)r̄(z, s), of the form@4#
02150
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r̄~z,s!5r1~s!u„z2zG~s!…1r2~s!u„zG~s!2z…

1G~s!d„z2zG~s!…, ~26!

whereh6(s)5v(1)r6(s) are the density distributions o
the two coexisting bulk phases andG~s! is the adsorption of
speciess at the interface for whichz5zG(s) is the Gibbs
dividing surface of speciess. In Eq. ~26!, u(z) denotes the
Heaviside step function andd(z) the Dirac delta function.
The macroscopic„r̄(z,s)… and microscopic„r(z,s)… pro-
files can be adjusted by requiring them to satisfy

E
2`

`

dz$r~z,s!2 r̄~z,s!%50, ~27!

which implies thatG~s! be defined as the surface exce
density, viz.

G~s!5E
2`

`

dz$r~z,s!2 r̂~z,s!%, ~28!

wherer̂(z,s) is the following bulk-phase switch function

r̂~z,s!5r1~s!u@z2zG~s!#1r2~s!u@zG~s!2z#.
~29!

Since atz56` both densities match,r(z56`,s)5 r̂(z
56`,s)5r6(s), we can integrate Eq.~28! by parts and
obtain

FIG. 1. The temperature~t!-density~h! bulk-phase diagram for
a550 ~cf. @7#!. Three binodals are shown. They correspond to
parent-phase densitiesh050.3 ~dashed line!, h05hc50.3659~full
line!, and h050.45 ~dot-dashed line!. Two binodals are truncated
upwards at resp. the supra-critical temperaturet.1.246 ~for h0

50.3! and the infracritical temperaturet.1.1905 ~for h050.45!,
while the untruncated binodal passes through the critical pointc

51.2355,hc50.3659. Similar results are obtained~cf. @7#! for a
515; in which case the critical point corresponds totc51.2889,
hc50.4842.
3-4
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G~s!5E
2`

`

dz@zG~s!2z#r8~z,s!, ~30!

where r8(z,s)5]r(z,s)/]z. As seen from Eq.~30!, the
value ofG~s! attributed to a givenr(z, s) still depends on
the value ofzG(s). Since there is no absolute determinati
possible forzG(s), we have to fix it arbitrarily, e.g., for the
reference speciess51. Taking henceforthzG(s)[zG(1) for
all s we can fixzG(1) by requiring that the correspondin
adsorption,G~1!, vanishes. Equation~30! implies then

zG~1!5

E
2}

`

dz zr8~z,1!

E
2`

`

dzr8~z,1!

, ~31!

whereas Eq.~30! becomes

G1~s!5E
2`

`

dz@zG~1!2z#r8~z,s!, ~32!

where the subscript 1 onG~s! indicates that the adsorption o
speciess is referred to the zero-adsorption Gibbs dividin
surface ~31! of the reference speciess51, henceG1(1)
50. Since, moreover, the system is of infinite extend in thz
direction, we may choosezG(1) as the origin of our coordi-
nate system, i.e.,zG(1)50. Some examples ofG1(s) are
given in Fig. 4. As seen from Fig. 4, at the interface there

FIG. 2. The density-@h6(s)5h6h6(s); cf. inset# and size-
distributions@h6(s)# of the low-density~h1 ; full line! and the
high-density~h2 ; dashed line! bulk phases (h1,h2) that coexist
for t51, h05hc50.4842, anda515. Note from the inset that for
0.3&s&0.7, the behaviors ofh6(s) and h65* ds h6(s) are
reversed, i.e., althoughh1,h2 we haveh1(s).h2(s) for these
s values. The low-~high-!density phase is enriched in small~large!
particles.
02150
s

both an excess of small particles@G1(s).0 for s,1# and a
depletion of large particles@G1(s),0 for s.1# with an
adsorption@G1(s)# which strongly depends ont andh0 .

V. PRESSURE PROFILE ACROSS THE PLANAR
INTERFACE

Besides the density profile@r(z,s)# which gives rise to
the adsorption properties described in the previous sect
an interface also involves a pressure profile@p(z)# which in
turn gives rise to the surface tension as will be shown@9# in
the next section. In order to expose the pressure in the i
rior of the interface described byr(z,s), we first cut this
interface with a plane perpendicular to the density profil
say thex50 plane, and remove the matter on thex,0 side
of this plane while leaving the matter on thex>0 side intact.
Such a semi-infinite system with a density,r(r ,s)
5u(x)r(z,s), can be realized within the DFT of Sec. II b
replacing the matter removed from thex,0 half space by a
corresponding external field, sayF(r ,s). The pressure act
ing normal to thex50 plane, i.e., acting in a direction whic
is tangential to the density profiles, can then be obtained
submitting thex50 plane to an infinitesimal nonuniform
normal deformation, viz.x→x1du(y,z), and computing the
resulting thermodynamic work of deformation~cf. @9#!.
Since during this infinitesimal deformation,F(r , s)
→F(r , s)1dF(r , s) and r(r , s)→r(r , s)1dr(r , s),
the system has to remain in equilibrium at the givenT and
m~s!, the relation betweendF(r , s) and dr(r ,s) can be
obtained from the equilibrium condition~3! as

dm~s!505dF~r ,s!

1E dr 8 E ds8
d2F~T,@r#!

dr~r ,s!dr~r 8,s8!
dr~r 8,s8!.

~33!

The resulting thermodynamic work of deformationdA can
then be obtained from~1!:

dAuT,@m#5E dr E ds r~r ,s!dF~r ,s!, ~34!

or on using Eq.~33!, from

dAuT,@m#52E dr E ds E dr 8 E ds8 r~r ,s!

3
d2F~T,@r#!

dr~r ,s!dr~r 8,s8!
dr~r 8,s8!. ~35!

Since in the present geometry we have,dr(r ,s)5r@x
1 du (y,z),y,z,s# 2 r (x,y,z,s) 5 du (y,z) @]r (r ,s) / ]x#
1O(du2), Eq. ~35! can be rewritten after dropping th
O(du2) term

dAuT,@m#52E dy8E dz8du~y8,z8!p~y8,z8!, ~36!
3-5



l

L. BELLIER-CASTELLA, H. XU, AND M. BAUS PHYSICAL REVIEW E 65 021503
FIG. 3. Density profiles fora515 across a planar interface:~a!–~b! at constant temperature (t51) and ~c! at constant density (h0

5hc50.4842). In~a!, we showh0(z) ~full line! andh1(z) ~dotted line!. Also shown for comparison is the monodisperse case~dashed line!
corresponding toa5` and h0(z)[h1(z). It is seen that the polydispersity broadens the interface. In~b!, we showh(z,s) for s51.25
~dot-dashed!, s51 ~dashed!, s50.75~dotted!, ands50.65~full line!. It is seen that the small particles (s,1) accumulate in the interfacia
region. Note also thath1(0.65).h2(0.65), whereash1(0.75),h2(0.75) in agreement with the reversal seen in Fig. 2. In~c!, we show
h(z,s50.65) for a515, h050.4842, andt50.85 ~full line!, 1 ~dots!, 1.1 ~short dashes!, 1.2 ~long dashes!, and 1.28~dot-dash!. „Here,
z* 5@z2zG(1)#/R(1)….
t
x

which defines the pressurep(y,z) acting atr5(0,y,z) in a
direction normal to thex50 plane. Indeed, sincedu(y,z) is
arbitrary Eqs.~35!–~36! imply

p~y,z!5E dx E ds E dr 8 E ds8 r~r 8,s8!

3
d2F~T,@r#!

dr~r 8,s8!dr~r ,s!

]r~r ,s!

]x
, ~37!

where, for convenience, we have interchanged the role of
primed and unprimed variables. In the present vdW appro
mation, we obtain from Eq.~4!
02150
he
i-

d2F~T,@r#!

dr~r ,s!dr~r 8,s8!
5kBT

d~r2r 8!d~s2s8!

r~r ,s!

1VA~ ur2r 8u;s,s8!

1kBT
d~r2r 8!

E~r , @r#! H v~s!1v~s8!

1
v~s!v~s8!

E~r , @r#!
E ds9r~r ,s9!J ,

~38!

which on behalf of Eq.~7!, reduces here to
3-6
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d2F~T,@r#!

dr~r ,s!dr~r 8,s8!
5kBT

d~r2r 8!d~s2s8!

r~r ,s!

1ss8VA~ ur2r 8u;1,1!1kBTd~r2r 8!

3v~1!H 11E~r ,@r#!

@E~r ,@r#!#2 J , ~39!

so that Eq.~37! can be rewritten

FIG. 4. The adsorptionG1(s) of s particles relative to the zero
adsorption Gibbs dividing surface@zG(1)# of the reference particle
(s51) at ~a! fixed density and~b! fixed temperature. Panel~a!
corresponds toa515, h050.4842, andt50.90 ~full line!, 1.00
~dots!, 1.10 ~short dashes!, 1.20 ~long dashes!, 1.28 ~dot-dash!.
Panel ~b! corresponds toa550, t51.15, andh050.45 ~line!,
0.3659~dots!, 0.3 ~dashes!. Note the rapid variations witht andh0

of the interfacial excess of the small particles (s,1) and depletion
of the large particles (s.1). @Here,G1* (s)5G1(s)3v(1)/R(1).#
02150
p~y,z!5E dx E dsH kBT
]r~r ,s!

]x

1E dr 8 E ds8r~r 8,s8!VA~ ur2r 8u;s,s8!

3
]r~r ,s!

]x
1kBTv~1!r~r ,s!

3
@11E~r ,@r#!#

@E~r ,@r#!#2 E ds8
]r~r ,s8!

]x J . ~40!

Taking into account that here,r(r ,s)5u(x)r(z,s), we can
rewrite Eq.~40! as

v~1!p~y,z!5kBTE
2`

`

dx
]

]x H h0~z!u~x!

12h0~z!u~x!J
1E

2`

`

dx E dr 8 VA~ ur2r 8u;1,1!

3d~x!h1~z!u~x8!h1~z8!, ~41!

whereh0(z) andh1(z) have been defined in Eq.~10!. Equa-
tion ~41! can be rewritten as

v~1!p~z!5
kBTh0~z!

12h0~z!
1

1

2
h1~z!E

2`

`

dz8 V1~ uz2z8u!

3h1~z8!, ~42!

where V1(uzu) was defined in Eq.~11! and we took into
account thatp(y,z) is independent ofy as expected from the
translational invariance in they direction. We finally rewrite
Eq. ~42! in a manner similar to Eq.~8!

v~1!p~z!5v~1!p0~z;T,@h#!1 1
2 h1~z!E

2`

`

dz8 V1~ uz2z8u!

3$h1~z8!2h1~z!%, ~43!

with p0(z;T,@h#) a shorthand notation for

v~1!p0~z;T,@h#!5
kBTh0~z!

12h0~z!
1

1

2
V0@h1~z!#2, ~44!

whereV0 was defined in Eq.~11!. It is seen that Eq.~44!
represents the usual vdW pressure of a uniform~polydis-
perse! system evaluated for the local densityh(z,s), while
the same is true of Eq.~9! for the chemical potential. From
Eq. ~40!, it is seen that the local pressurep(z) is completely
determined by the local densityh(z,s). From Eq.~43! and
h(6`,s)5h6(s) we obtain p(6`)5p0(6`;T,@h6#),
but sinceh6(s) must satisfy@7#

kBTh0
1

12h0
1 1

1

2
V0~h1

1!25
kBTh0

2

12h0
2 1

1

2
V0~h1

2!2 ~45!
3-7
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together with Eq. ~22!, we have p(`)5p(2`), or
* dz p8(z)50, which expresses the stability of the plan
interface~cf. @9# for details!.

Some of the pressure profiles,p(z), obtained from Eq.
~43! using the density profiles of Sec. III are shown in Fig.
While p(z) remains constant in the bulk phases, it exhibit
structure in the interfacial region which is more pronounc
for the lower temperatures and disappears gradually wht
5tc is approached. This structure consists of a press
depletion on the high-density side of the interface and a p
sure excess on the low-density side~a similar structure was

FIG. 5. The pressure profile@p(z)# versus the distance~z! from
a planar interface perpendicular toz axis for ~a! a550 andh0

50.3659 and~b! a515 andh050.4842 and three temperaturest
50.9 ~full line!, t51 ~dots!, and t51.1 ~dot-dashes!. The interfa-
cial region is seen to be broadened by the polydispersity. All p
files exhibit a pressure depletion~excess! on the high-~low-! density
side of the interface.@Here, p* (z)5p(z)v(1)/e(1,1) and z*
5z/R(1).#
02150
r

.
a
d

re
s-

found in the monodisperse case@8# for a different potential
VA(r ;1,1) and was seen also in the simulation results
@13#!. This local structure ofp(z) reflects a competition be
tween the characteristic length scales ofr(z,s) and of
VA(r ;1,1). It is also seen@compare Figs. 5~a! and ~b!# that
increasing the polydispersity~i.e., lowering a! widens the
interfacial region@i.e., the region wherep8(z)Þ0#.

VI. SURFACE TENSION AND SURFACE OF TENSION

In a way analoguous to Eq.~26!, the microscopic pressur
profile p(z) of Sec. V is replaced in macroscopic thermod
namics by a discontinuous pressure profile,p̄(z):

p̄~z!5p1u~z2z0!1p2u~z02z!2gd~z2z0!, ~46!

wherep65p(6`) denote the bulk-phase pressures andg is
the surface tension acting on a surface of tension locate
z5z0 . As in Eq. ~27!, the two profiles can be adjusted b
requiring that

E
2`

`

dz$p~z!2 p̄~z!%50, ~47!

which on behalf of Eq.~46! yields

g5E
2`

`

dz$ p̂~z!2p~z!%, ~48!

wherep̂(z)

p̂~z!5p1u~z2z0!1p2u~z02z! ~49!

is the switch function for the bulk-phase pressure@cf. Eq.
~29!#. Integrating Eq.~48! by parts and taking into accoun
that for a planar interface we must havep(6`)5 p̂(6`)
5p6, together withp15p2 , yields

g5E
2`

`

dz zp8~z!, ~50!

which shows thatg can be determined from the knowledg
of p8(z)5dp(z)/dz alone, i.e., without knowingz0 @cf. the
difference with Eq.~30!#, a feature specific to the plana
interface~cf. @9#!. To determinez0 , one can nevertheless als
impose~cf. @9#! that

E
2`

`

dz z$p~z!2 p̄~z!%50, ~51!

which on using Eq.~47! can be rewritten as

05E
2`

`

dz~z2z0!$p~z!2 p̄~z!%5E
2`

`

dz~z2z0!$p~z!

2 p̂~z!%, ~52!

or integrating Eq.~52! by parts and usingp15p2, one ob-
tains

-
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FIG. 6. The surface tension~g! versus the temperature~t! for: ~a! a550 andh050.3 ~dots!, h05hc50.3659~full line! andh050.45
~dot-dash!; ~b! a515 ~dot-dash!, a550 ~dots!, anda5` ~full line! for h05hc(a); ~c! the same as~b! but plotted now versust/tc(a)
wheretc(a) andhc(a) are, respectively, the~reduced! critical-point temperature and density of a system with polydispersity indexI 51
1(1/a). „Here,g* 5gR(1)v(1)/e(1,1).…
om
-

e
oint
ara-
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e
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e
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to
E
2`

`

dz~z2z0!2p8~z!50. ~53!

Using, * dz p8(z)50, Eq. ~53! yields finally

z05
1

2

E
2`

`

dz z2p8~z!

E
2`

`

dz zp8~z!

~54!

so that bothg and z0 can be obtained fromp8(z) @cf. Eqs.
~50! and ~54!#.

Figure 6 shows some of the results obtained forg using
the pressure profiles of Sec. V. From Fig. 6~a! it is seen that
g decreases when increasingh0 at a fixed polydispersity.
When, instead, the polydispersity is changed starting fr
the monodisperse case (a5`) there are two competing ef
02150
fects @cf. Fig. 6~b!#: the polydispersity tends to lower th
surface tension but at the same time it raises the critical-p
temperature since the polydispersity favors the phase sep
tion ~cf. @7#!. As a net result of this competition, the surfa
tension of the polydisperse system is lower than that of
monodisperse one fort,t0 but exceeds it fort.t0 with a
crossover temperaturet0 which increases with the polydis
persity. To show this more clearly Fig. 6~c! displaysg versus
t/tc(a), wheretc(a) is the critical point temperature of th
system with polydispersitya.

The above surface tension~g! acts on the surface of ten
sion located atz5z0 @cf. Eq. ~46!#. From Fig. 7, it is seen
that z0,0, i.e., the surface of tension is different from th
zero-adsorption Gibbs dividing surface@z5zG(1)50# and
located on the high-density side of this interface~this can
also be seen from Fig. 5!. The fact thatz0ÞzG(1) points to a
fundamental inadequacy of the macroscopic description
interfaces~cf. @9#! since two different quantities are used
3-9
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locate the interface on a macroscopic level. The quantityl T
5zG(1)2z0 , is usually called Tolman’s length@4#. Finally,
from Fig. 8 it is seen that on approaching the critical poing
vanishes with a classical critical exponent~53/2! as ex-
pected from the mean-field vdW theory@4#.

VII. CONCLUSIONS

We have studied the planar interface resulting from
phase separation or fractionation of a parent phase of a p
disperse colloidal system into a low-density fluid phase
riched in small particles and a high-density fluid phase
riched in large particles. In order to tackle the combin
effect of the system’s polydispersity and spatial nonunif
mity we have kept the theoretical description as simple
possible but are confident that similar results can be fo
from more involved descriptions. Using a simple van d

FIG. 7. Tolman’s length (l T5zG(1)2z0) versus the temperatur
~t! for a550 andh050.3 ~dots!, h05hc50.3659~dash!, andh0

50.45 ~dot-dash!. @Here, l T* 5 l T /R(1).#
ev

02150
e
ly-
-
-

d
-
s
d
r

Waals description@7–8# to model the polydisperse nonun
form system of spherical colloidal particles with exclud
volume repulsions and Gaussian attractions, it was found
the small particles accumulate at the interface, the latter
ing moreover depleted with larger particles and broade
with respect to the monodisperse case. We also found tha
a given temperature, the surface tension is the result o
competition between two polydispersity-induced effec
namely, its tendency to lower the surface tension and at
same time to raise the critical point temperature, with
former effect winning at low temperatures and the latter
higher temperatures. Finally, the surface of tension w
found to be located on the high-density side of the interfa
pointing to a positive Tolman’s length.
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FIG. 8. A lng* versus lnt* plot for a5` ~full line! and a
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